
1 
SIGMA Technology 

IOSO Approximation software 

 

 

 

 

 

 

 

 

 

IOSO Approximation software v.1.0 
 

User Guide 



2 
SIGMA Technology 

IOSO Approximation software 

 

Contents 
IOSO Approximation 1.0 Software ...................................................................... 3 

IOSO Approximation Software Interfaces ........................................................... 5 

Creating an approximation model step by step .................................................. 9 

Step 1.  Loading initial data ............................................................................. 9 

Step 2.  Building an approximation function ................................................. 12 

Multidimensional approximation methods ............................................... 13 

One-dimensional approximation methods. .............................................. 22 

Step 3. Saving the approximation model ...................................................... 26 

 



3 
SIGMA Technology 

IOSO Approximation software 

IOSO Approximation 1.0 Software 

The «IOSO Approximation» software allows you to interpolate data and create an 
approximation model as an executable file (* .exe). Interpolation is a method of constructing 
new data points within the range of a discrete set of known data points in the mathematical 
field of numerical analysis. 

 

The “IOSO Approximation” software allows the user to create fit functions using powerful 
univariate and multivariate fitting methods 

One-dimensional approximation methods: 

− Polynomial Interpolation (PI) 

− Polynomial Fitting (PF) 

− Rational Interpolation (RI) 

− Rational Fitting (RF) 

− Linear Spline (SLI) 

− Cubic Spline (SCI) 

− Catmull-Rom Spline (SCRI) 

− Akima Spline (SAI) 

− Cubic Spline Fitting (SCF) 

− Hermite Spline Fitting (SHF) 

− Penalized Spline Fitting (SPF) 
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Multi-dimensional approximation methods: 

-  RBF - Radial basis function interpolation; 

- IDW Inverse distance weighting interpolation. 

. 

The initial Data for the construction of the approximation function can be: 

- protocols of projects of the IOSO optimization software; 

- arrays of data in text format files, including CSV files; 

- data entered into the IOSO Approximation table. 

The constructed approximation function can be saved as an executable model (exe file) and 
used later as surrogate models in problems of modeling systems or objects. These models 
can be used in the IOSO optimization software to replace complex resource-intensive 
computational models when solving optimization problems with multidisciplinary projects 
and the possibility of automated creation, connection and training of approximation models 
on new data is implemented. 

   IOSO Approximation software developed by SIGMA Technology 
(https://www.iosotech.com).  

Please send suggestions and comments on the software application to 
company@iosotech.com  with a note in the subject line of IOSO. 

 

https://www.iosotech.com/
mailto:company@iosotech.com
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IOSO Approximation Software Interfaces 

GUI of IOSO Approximation software. Main interface. 

 

Use this interface to create and present an approximate model using different tabular 

graphics. 

The top toolbar contains commands: 

 

- open the file.  Different types of files are available to open:  

- file with data in .csv or text format. For the text format, values must be written in split 

columns: a comma dot or tabulation; 

- previously saved approximation project file (*.apr); 

- IOSO Optimization project file (* .opm, * .popm). Data from the protocols of parametric 

studies, from the protocol of the current optimization problem, or from the general 

protocol can be taken from this file. From this data, data can be selected for the selected 

models (models). 

  - save the approximation project (*.apr). 

The table of input data used to 

build the approximation function 

Vertical charts 

Approximation 

 Methods  

 

Graphs of approximation 

functions and initial data 

Setting constant values 
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 – save the generated approximation function as an executable file (* exe). This 

executable file can be used as an independent computational model in the IOSO 

optimization software or for other purposes. 

  – create an approximation function. Not active when the "Rebuild automatically" 

mode is enabled in the section of approximation methods; 

  - display the values of the approximation function in the vertical graph window; 

 - setting the used parameters (columns) in the table to build the approximation 

function; 

  - show columns with unused parameters in the table or not; 

 - selecting the number of graphs displayed in the Graphics window 

-- customizing the User Interface and used approximation methods; 

- - filter for the data used to build the fit function. The settings of this filter are 

synchronized with the filter on vertical charts; 

- IOSO Approximation software information; 

  - software help.  

Commands for displaying software interfaces located on the bottom toolbar: 

  and . 

These commands are used for visualization and work with the software with low-

resolution displays. 

 - enable / disable the "Charts" window; 

 - enable / disable the "Chart settings" panel; 

 - enable / disable the window " Approximation Methods"; 

  enable / disable the "Setting constant values" window. Setting constant values is 

used to evaluate the behavior of the multivariate approximation function when changing 
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the selected parameters (input values); 

   enable / disable the "Vertical charts" window; 

   enable / disable the "Table" window; 

 - Statistical information on the array of input data. 

You can perform parametric studies of the created approximation model using the 

Parameters interface. Switching to this mode is performed on the tab (see Fig. Below) 

 

You create a calculation point pattern using the calculation plan creation form. The 

following data array modes are available: 

− full-factor experiment; 

− Latin hypercube. 
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Creating an approximation model step by step 

Step 1.  Loading initial data 

To load an initial data, use the "Open file" command of the top toolbar . 

The initial Data for the construction of the approximation function can be: 

- Protocols of projects of the IOSO optimization software; 

- arrays of data in text format files, including CSV files; 

- data entered into the IOSO Approximation table. 

 

When loading a data array in the "Output parameters" position, you must specify 

the number of columns with function values. It is assumed that the first columns 

contain the function arguments, the last columns contain the function values. The 

number of function values can be 1 or more. 

 

The data is loaded into a table and displayed on graphs. The function arguments are 

displayed in the table on a yellow background - (in this figure there are 2 of them), 

the function values - on a green background - (in the figure there are 4 of them). 

It is possible to use the Check box to select data (function and function arguments) 

for which it is necessary to construct approximation functions. The figure shows that 

for the "Y2_Belegundu" function, the approximation function is not built and the 

values in lines 5,7 will not be used to build the approximation functions. 
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The button "Statistics about the array of initial data"  allows you to show the 

following information about the array of initial data: 

- Minimum and maximum parameter value; 

- mid-arithmetic step value between the parameters (”Avg. step”); 

- root-mean-square deviation for parameter intervals ("Std. step dvn”). To 

create an approximation function, it is recommended to use data arrays with 

a uniform distribution of parameters in the studied range; 

- graphical distribution - a histogram of the number of values in 20 equal 

segments of the studied range; 

- histogram of the number of parameter step values in 20 equal segments of 

the available parameter step range. 

The table contains values for the current and the entire selection. The values of the 

entire array are indicated in parentheses. 

The values of the entire data set are shown in light color on the histogram, the 

values of the current sample are shown in dark color on the histogram.  
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The filter in the "vertical charts" window is also used to filter data. The filter is opened 

by pressing the icon . the range of parameters in the selection changes when 

moving the indices on the vertical scale of the parameter. 

 

it is possible to "manually" generate an array of data in the table. The table editing 

menu is invoked by the right mouse button. 

The entire data 

Sample 



12 
SIGMA Technology 

IOSO Approximation software 

  

 

Step 2.  Building an approximation function 

To build an approximation function, you must select the method / methods of 
approximation and the function will be built automatically.  

 

The color of the fit function can be changed by double-clicking the pattern of the fit 
function line. 

 - approximation method settings.  
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Multidimensional approximation methods  

- RBF - Radial basis function interpolation; 

- IDW Inverse distance weighting interpolation. 

 

RBF - Radial basis function approximation 

RBF - Radial basis function approximation. Hierarchical algorithm. 
Parameters: 

• RBase - initial radius. Must be > 0. 

• NLayers - number of layers in the model. Must be > 0, recommended value to start 
with - about 5. 

• LambdaNS - must be >= 0, nonlinearity penalty coefficient, negative values are not 
allowed. 
This parameter adds controllable smoothing to the problem, which may reduce noise. 
Specification of non->=0, nonlinearity penalty coefficient, negative values are not allowed. 
This parameter adds controllable smoothing to the problem, which may reduce noise. 
Specification of non-zero LambdaNS means that in addition to fitting error solver will also 
minimize LambdaNS*|S''(x)|^2 (appropriately generalized to multiple dimensions). 
Specification of exactly zero value means that no penalty is added (we do not even 
evaluate matrix of second derivatives which is necessary for smoothing). 
Calculation of nonlinearity penalty is costly - it results in several-fold increase of model 
construction time. 
Evaluation time remains the same. 
Optimal LambdaNS is problem-dependent and requires trial and error.  Good value to start 
from is 1e-5...1e-6, which corresponds to slightly noticeable smoothing of the function.  
Value 1e-2 usually means that quite heavy smoothing is applied.  
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RBF algorithm has controlled smoothing with non-linearity penalties. 

 

Penalty for non-linearity - LambdaNS = 0. 

 

Penalty for non-linearity - LambdaNS = 0.5. 

 

The parameter " Lines history" allows you to track the history of changes - the previous 
charts are shown. 
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Introduction to RBF's 

This article is intended for readers who needs introductory course on basic 
concepts of RBF interpolation. 

Problem types 

Interpolation problems can be separated into two main classes: problems with 
spatial variables (XYZ) and problems with mixed, spatial/temporal variables (XY-
T). In the problems of the first kind all variables have same dimensions (spatial) 
and scale. In the problems of the second kind one variable (time) has special 
meaning, dimension (temporal) and scale. Fundamental limitation of all RBF 
methods is that they can successfully solve only problems of the first kind. 

For example, consider an interpolation problem for a scalar grid in 2D space. 
There is a set of sensors which measure field magnitude with particular 
frequency. Average distance between sensors is 1m, average measurement 
interval is 1ms. Problem of the first kind is to build RBF model which described 
field state at some moment of time, using only measurements performed at the 
same time. Problem of the second kind is to describe evolution of the field in 
time, having a set of time series (measurements performed by sensors at 
different moments of time). 

If you try to solve second problem, you will see that spatial and temporal 
variables have different scale. RBF is a basis function with radial symmetry, it 
has same span in all dimensions. Thus, either basis function radius will be equal 
to 1.0 - ideal for spatial interpolation, but too large for interpolation in time, or 
it will be equal to 0.001 - ideal for temporal interpolation, but too small to build 
good spatial model. 

In theory, problem can be rescaled. However, optimal scaling coefficients are 
problem-specific, and there is not out-of-box solution for problems with mixed 
variables. This limitation is an intrinsic property of the RBF models. Many other 
interpolation methods, like multidimensional polynomials or splines, are 
invariant with respect to scaling of the variables. Such methods correctly work 
when different variables have different scale. 

Basis functions 

RBF model has following form: f(x)=SUM(wi ·φ(|x-ci |)). Here φ is a basis 
function, wi  are weight coefficients, ci  are interpolation centers. Interpolation 
centers usually coincide with original (input) grid, basis function is usually 
chosen from the list below, and weights are calculated as solution of the linear 
system. Following basis functions are used: 
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• f(r)=exp(-r 2/R0 2) � Gaussian basis function. The main benefit of 
this function is that it is compact - it is small at distances about 3·R0 from the 
center. At distances equal to 6·R0 or larger this function can be considered 
zero. As result, we have to solve linear system with sparse matrix. However, 
significant drawback is that we have one parameter to tune - R0. Too 
small R0 will make model sharp and non-smooth, and too large one will result 
in system with ill-conditioned matrix. 

• f(r)=sqrt(1+(r/R0) 2) � multiquadric basis function. Non-compact 
basis function, which is non-zero at any point. It is very important drawback - 
we have to solve systems with dense matrices. Another drawback - again, we 
have to tune R0. 

• f(r)=r 2k·ln(r), f(r)=r 2k+1 � polyharmonic basis functions. Non-
compact basis functions without tunable parameters. This is the most 
important advantage of polyharmonic basis. However, non-compactness, its 
main drawback, very often makes this basis unsuitable for medium and large 
scale problems. Linear systems with large dense matrices are hard to solve. 

Implementation of RBF functions uses Gaussian basis. Compactness of the basis 
functions gives us high performance. We have to tune scale parameter R0, but 
from our point of view this drawback is insignificant when compared with 
ability to solve problems with tens and hundreds of thousands points. 

Choosing good radius 

What does model radius mean? 

If we choose Gaussian basis function, we have to choose its tunable parameter - 
radius. Radius R0 sets scale at which basis function is significantly non-zero. 
Gaussian basis function has its maximum at r=0 (equal 1), it is approximately 
0.36 at r=R0, it is approximately 0.02 at r=2·R0, it is approximately 0.0001 
at r=3·R0. At distance r=6·R0 or larger Gaussian basis function is 
indistinguishable from zero. 

Another meaning of this parameter is a size of the "spheres of influence" of the 
points with known function values. Model value at x is determined by function 
values at nearby nodes, mostly by ones at distance R0 or closer. 

One more meaning of this parameter is a typical size of the "gap" in the grid, 
which can be "repaired" by RBF model. Consider evaluation of the RBF model at 
some point x, where function value is unknown If there are exists several nodes 
at distance R0 or closer, model will reproduce original function with good 
precision. Best results are achieved when x is located between nodes, in the 
inner part of the interpolation area. However, if nearest nodes are located at 
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distances about 2·R0, then x won't be covered by their basis functions, and 
model quality at x will be low. 

The larger radius we choose, the better will be RBF model. However, large 
radius usually means large condition number of the system, large error in the 
coefficients, slow model construction and evaluation. Smaller radius means 
small error in the coefficients, models which are quick to build and to evaluate. 
However, radius which is too small leads to rapid degradation of the model 
quality. 

1D example 

Consider 1-dimensional RBF interpolation problem. We have equidistant grid of 
11 points with known function values, with unit step (red markers). We built 
three RBF models with different radii, and plotted them at charts below. Lets 
compare quality of these models. 

 

First model was built with radius 0.1, ten times smaller than distance between 
points. You may see that it passes exactly through all points, but its 
behavior between them makes it useless. Second model has R0=0.6 and it is 
significantly better than the first one. However, there is some degree of non-
smoothness, sometimes it is clearly biased toward zero ("default value" for RBF 
models). Third model, which has R0=1 (equal to distance between points) gives 
almost perfect result. 

Note #1 
We have not considered interpolation with larger radii, because charts which 
correspond to R0 > 1 are visually indistinguishable from one built with R0=1. 

From charts above we can conclude that radius should be at least equal to the 
average distance between points davg , and for safety reasons it is better to have 
radius which is several times larger than davg . Smaller radii lead to rapid 
degradation of the model. However, it is important to remember that large 



18 
SIGMA Technology 

IOSO Approximation software 

radius means larger condition number. Straightforward attempt to solve linear 
system will face problems with precision even at quite moderate R=3. 

2D example 

Above we've considered quite simple example - one-dimension, equidistant 
points. It was very simple to choose appropriate radius. Below we consider 
more complex example: points are located in 2D space at two nearby lines - y=-
2 and y=+2. At each of these lines we have equidistant grid with unit step. 
Distance between lines is four times larger than the grid step, and it 
complicates radius selection. 

We've started from obviously insufficient radius R0=0.25. On the chart below 
we've plotted model values at each point of the 2D space. You may see that 
each point (black circle) has "sphere of influence" - colored bubble, which 
dissolves in the blue background (corresponds to zero, "default value" of the 
model, which is returned when there is no nearby nodes). However, these 
spheres do not overlap, model is almost zero in the gaps between them. This 
chart is a 2D analog of the first of 1-dimensional charts above. 

 

With R0=1 we got new chart (below). "Spheres of influence" grew larger and 
overlap with each other (red/yellow/green lines at the top and bottom). We 
can conclude that this model is a good description of the function as long as we 
stay near y=-2 or y=+2. However, between these two lines there is a part of 
space which is not covered by the basic functions. At these points, marked by 
blue color, our model will return zero value. 
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Third chart was built with R0=4 (which is equal to distance between y=-
2 and y=+2). This model is many times better than previous ones, because it 
reproduces function both at y=-2/y=+2 and between them. You may see that 
basis functions covers space between any pair of points. 

 

Conclusions 

From the first example we can conclude that radius should be at least equal to 
average distance between nodes. Smaller values will give us sharp model which 
does not reproduce function behavior between nodes. However, average 
distance is only a lower bound - such radius selection rule works only when 
space is uniformly filled with nodes. In case there exists non-uniformity, some 
complex pattern in the distribution of nodes, then "average distance to the 
nearest neighbor" may be too small for good radius, which was shown by the 
second example. In the general case radius R0 should so large that for any point 
where we want to evaluate model there will be several nodes at distance R0 (or 
closer) around evaluation point. 

Polynomial term 

We can add linear term to the "basic" RBF model considered 
above: f(x)=SUM(wi ·φ(|x-ci |)) + a T·x+b. Presence of the linear term helps to 
reproduce global behavior of the function. Instead of linear term we can use 
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polynomial term of the higher degree. From the other side, sometimes better 
option is to use constant term. 

Model construction 

After choice of the basis function (and, optionally, polynomial term) we have to 
build model, i.e. to calculate weight coefficients. There exists several 
approaches to the solution of this problem: 

• "straightforward" approach � solution of the linear system using 
dense solver. It works with any basis function, but we have to live with low 
performance (solution time grows with number of points N as O(N 3). Thus, 
several thousand of points is a limit for this approach. 

• for compact (Gaussian) basis functions we can use sparse linear 
solver, either direct or iterative one. In this case matrix of the system will be 
sparse (the more compact basis function we choose, the more sparse matrix we 
will get). Because convergence of the iterative solver depends on the system 
conditioning, it will easily solve problems with small radius (approximately 
equal to the distance till the nearest neighbor), but will have difficulties with 
larger radii. From the other side, it does not need additional memory. Direct 
solver can solve problems with larger radii (up to 2-3 distances), but needs 
additional memory to store LU or Cholesky decomposition of the system. 

• in case non-compact basis functions (polyharmony functions or 
multiquadric) are used, linear system will be dense. Direct dense solver will 
show better results that iterative one, but there exists complex strategy which 
allows to achieve good performance with iterative solver. In order to accelerate 
convergence, it is possible to use special kind of preconditioning - approximate 
cardinal basis functions (ACBF) preconditioning. In this case we compose 
several non-local basis functions to build another, local one (cardinal basis 
function). It would be great to have perfect local basis with unit condition 
number, but in reality, we have to limit ourselves by some approximate solution 
(that's why it is called "approximate"). In the new basis our problem can be 
solved within 5-10 iterations of GMRES solver. Usually, solution itself needs 
only minor fraction of the total processing time, and most time is spent in the 
construction of new basis. 

• ACBF-preconditioning, which was described above, can be used for 
compact basis functions too. In this case compact functions become "more 
compact", which allows us to use iterative solvers with quite large radius, equal 
to 2 distances till the nearest neighbor. 

• another solution which works only with compact basis functions is 
to separate original dataset into several smaller datasets. RBF construction 
problem is solved separately for these smaller parts, and then we compose 
partial models into larger, global one. Model composition is imperfect and we 
have artifacts near boundaries, so we have to solve interpolation problem one 
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more time - now to correct errors of the first model. As result, we got iterative 
algorithms, which repeats "separate-solve-compose-correct" loop several times 
before achieving desired accuracy. 

• algorithms described above share one common trait - they solve 
original problem without any modifications. However, by slightly changing 
problem statement we can get good interpolant with many times lower 
performance penalty. For example, instead of N Gaussian functions with same 
radii we can use more functions with different radii. Interpolation problem can 
be solved in several steps, by building hierarchy of finer and finer model with 
decreasing radii. Such approach has several names: hierarchical RBF, multiscale 
RBF, multilevel RBF or multilayer RBF. Its main benefit - high performance, 
which achieved due to use of hierarchy of easy to build models. 

Model evaluation 

After construction of the RBF model we have to solve one more problem: to 
evaluate model at given point x. Depending on the specific choice of the basic 
functions (compact or non-compact), two approaches to the evaluation are 
possible: 

• summation of all N basis function, "default" solution which can be 
used with any basis function. And it is the only solution which is possible for 
non-compact basis functions. 

• summation of nearby basis functions, which are non-zero at the 
evaluation point. This option can be used only with compact basis functions, 
and its main benefit is high performance. Such solution requires data structures 
which support efficient spatial queries, like kd-trees. 

Resume 

Above we've studied RBF interpolation, basic concepts and subtle tricks, which 
are used to achieve better precision or performance. One particular 
implementation of the idea above is an algorithm, which: 

• uses compact basis functions. 

• can solve both interpolation and fitting/smoothing problems. 

 

IDW Inverse distance weighting: interpolation. 

IDW Inverse distance weighting: interpolation/fitting with improved Shepard-like 
algorithm. 
Parameters: 
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• Search Radius - Initial search radius, > 0 is required. A model value is 
obtained by "smart" averaging of the dataset points within search radius. 

• Layers Namber - number of layers in the model. 
By default, 16 layers is built, which is enough for most cases. 
The more layers you have, the finer details can be reproduced with IDW model. The 
less layers you have, the less memory and CPU time is consumed by the model. 
Memory consumption grows linearly with layers count, running time grows sub-
linearly. The default number of layers (16) allows you to reproduce details at 
distance down to 1/65536 of the search radius. You will rarely need to change it. 
 

 When comparing RBF and IDW, RBF has the properties of an "elastic metal sheet" 

and IDW has the "inelastic rubber sheet." Method IDW weak point - sag function at 

the edges of the array if the array has insufficient number of points - "inelastic 

sheet" at the edges sag, IDW method lacks support from surrounding points. 

 

One-dimensional approximation methods. 

▪ Polynomial Interpolation (PI) 

▪ Polynomial Fitting (PF) 

▪ Rational Interpolation (RI) 

▪ Rational Fitting (RF) 

▪ Linear Spline (SLI) 

▪ Cubic Spline (SCI) 

▪ Catmull-Rom Spline (SCRI) 

▪ Akima Spline (SAI) 

▪ Cubic Spline Fitting (SCF) 

▪ Hermite Spline Fitting (SHF) 

▪ Penalized Spline Fitting (SPF) 

 

Polynomial interpolation. 

Polynomial interpolation is the most known one-dimensional interpolation method. Its 

advantages lie in its simplicity of realization and the good quality of interpolants obtained 

from it. However, it has several disadvantages (some of them will be considered later) and is 

lately hard-pressed by alternative interpolation methods: splines and rational functions. But, 

in spite of that, polynomial interpolation is still one of the main tools of numerical analysis. 

Parameters: 
Polynom– polynomial variants. It can take one of the values: 
o General - Lagrange polynomial. 
o Equidistant  -  Lagrange polynomial: generation of the model on equidistant grid. 
 

Polynomial fitting. 

Polynomial functions fitting. 
Parameters: 
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• Number of basis functions -  must be greater than or equal to 1. 
 

Rational interpolation. 

The rational interpolation is one of the most difficult methods of interpolation. Its 

advantages are the high accuracy and absence of the problems which are typical for 

polynomial interpolation. At the same time, these methods have several weaknesses: for 

example, we can always find an interpolating polynomial for any set of points, but not all set 

of points have an interpolating rational function. Poles are also a big problem. They tend to 

appear unexpectedly. However, the last methods can solve most of the problems typical for 

the first rational interpolation methods. To make this clear, it is worth considering the 

evolution of rational interpolation algorithms. 

The rational interpolation (i.e., interpolation by rational functions) consists of the 
representation of a given function as the quotient of two polynomials: 

 
Parallel with the spline interpolation , the rational interpolation is an alternative for 
the polynomial interpolation. The main disadvantage of the polynomial interpolation is that 
it is unstable on the most common grid - equidistant grid. If we are free to choose the grid, 
we can solve the problem by choosing the Chebyshev nodes. Otherwise (or if we just need a 
less node-dependent algorithm) the rational interpolation can be an appropriate alternative 
for the polynomial interpolation. 
 
Rational functions interpolation. 
Parameters: 

• D - order of the interpolation scheme, 0 <= D <= N - 1. 
N - number of nodes, N > 0. 

If you are unsure which D to choose, use a smaller value D (3 to 5). 
 

Rational fitting. 

Rational functions fitting. 
Parameters: 

o Number of basis functions -  must be greater than or equal to 2. 
 

Linear spline. 

The linear spline is just a piecewise linear function. The linear splines have low precision, it 
should also be noted that they do not even provide first derivative continuity. However, in 
some cases, piecewise linear approximation could be better than higher degree 
approximation. For example, the linear spline keeps the monotony of a set of points.. 
 

Cubic spline. 

All splines considered on this page are cubic splines - they are all piecewise cubic functions. 
However, if someone says "cubic spline", they usually mean a special cubic spline with 
continuous first and second derivatives. The cubic spline is given by the function values in the 
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nodes and derivative values on the edges of the interpolation interval (either of the first or 
second derivatives). 

• If the exact values of the first derivative in both boundaries are known, such spline is 
called clamped spline, or spline with exact boundary conditions. This spline has interpolation 
error O(h 4). 

• If the value of the first (or second) derivative is unknown, we can set the so-called natural 
boundary conditions S''(A)=0, S''(B)=0. Thus, we get a natural spline. The natural spline has 
interpolation error O(h 2). The closer to the boundary nodes the more the error becomes. In 
the inner nodes the interpolation accuracy is much better. 

• One more boundary condition which we can use when boundary derivatives are unknown is 
the "parabolically terminated spline". In this case, the boundary interval is represented as 
the second (instead of the third) degree polynomial (for inner intervals, third-degree 
polynomials are still used). In a number of cases this provides better accuracy than natural 
boundary conditions. 

• We can also set periodic boundary conditions (this kind of conditions is used to model 
periodic functions). 
At last, we can combine different types of boundary conditions for different boundaries. It 
does make sense if we have only partial information about the function behavior at the 
boundaries (e.g., we know the left boundary derivative, and have no information about the 
right boundary derivative). 
Parameters: 

• Monotone – values: True or False. Monotone cubic interpolation is a variant of cubic spline 
that preserves monotonicity of the data being interpolated. 
 

Catmull-Rom spline. 

Catmull-Rom spline is a Hermite spline whose derivatives are chosen to be 

 
Catmull-Rom spline is continuous up to the first derivative; second derivative is 
discontinuous. It is local: spline values depend only on four function values (two on the left 
of x, two on the right). It supports two kinds of boundary conditions: 
 
Parabolically terminated spline. In this case, the boundary interval is represented as the 
second (instead of the third) degree polynomial (for inner intervals, third-degree polynomials 
are still used). In a number of cases this provides better accuracy than natural boundary 
conditions. 
Periodic boundary conditions (this kind of conditions is used to model periodic functions). 
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Akima spline. 

 
The Akima spline is a special spline which is stable to the outliers. The disadvantage of cubic 
splines is that they could oscillate in the neighborhood of an outlier. On the graph you can 
see a set of points having one outlier. The cubic spline with boundary conditions is green-
colored. On the intervals which are next to the outlier, the spline noticeably deviates from 
the given function - because of the outlier. Akima spline is red-colored. We can see that in 
contrast to the cubic spline, the Akima spline is less affected by the outliers.  
An important property of the Akima spline is its locality - function values in [xi , xi+1 ] depends 
on fi-2 , fi-1 , fi , fi+1 , fi+2 , fi+3  only. The second property which should be taken into account is 
the non-linearity of the Akima spline interpolation - the result of interpolation of the sum of 
two functions doesn't equal the sum of the interpolations schemes constructed on the basis 
of the given functions. No less than 5 points are required to construct the Akima spline. In 
the inner area (i.e. between x2  and xN-3  when the index goes from 0 to N-1) the interpolation 
error has order O(h 2). 
 

Cubic spline fitting. 

Least squares fitting by cubic spline. 
Parameters: 

• Number of basis functions – must be greater than or equal to 4. 
 

Hermit spline fitting. 

The cubic Hermite spline is a third-degree spline, whose derivative has given values in nodes. 
For each node not only the function value is given, but its first derivative value too. Hermite's 
cubic spline has a continuous first derivative, but its second derivative is discontinuous. The 
interpolation accuracy is much better than in the piecewise linear case. 
Parameters: 

• Number of basis functions – must be greater than or equal to 4. 
 

Penalized Spline Fitting. 

Fitting by smoothing (penalized) cubic spline. 
Approximates N scattered points (some of X[] may be equal to each other) by cubic spline 
with M  nodes  at  equidistant  grid  spanning interval [min(x,xc),max(x,xc)]. 
Parameters: 
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• Number of basis functions – must be greater than or equal to 4. 

• Regularization constant – must be greater than or equal to 0. 
It penalizes nonlinearity in the regression spline. 
Possible values to start from are 0.00001, 0.1, 1 

 

The determination factor is used to estimate the quality of the approximation 
function- Кdt  

 

If there is no association of the approximation function with the data array, the 
determination coefficient is zero, and when the functional relationship is complete, 
it is one, that is, it determines which fraction of the variation of the characteristic Y 
is taken into account in the approximation model and is due to the influence of 
factors on it. 

The determination factor (R2) is defined as follows:  

 

 Step 3. Saving the approximation model 

Save the approximation project using the Save command- . 

To save the created approximation function as an executable (* exe), use the “Build 

Approximation Model” command- . 

 This executable can be used as an independent calculation model in the IOSO 
optimization software or for other purposes 


